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I. INTRODUCTION 

A local second-moment conserving quasi-lagrangian scheme developed by Egan 
and Mahoney [2] and extended by Pedersen and Prahm [4] for solving the advection 
equation is analyzed. This investigation establishes the ability of the scheme to advect 
a one-dimensional wedge distribution at a uniform velocity by comparing charac- 
teristics of the analytic distribution with those obtained through numerical advection. 
A comparison is also made between the scheme and several commonly implemented 
finite difference advection schemes. The one-dimensional wedge distribution was 
selected for investigation as several previous investigators have used it for examining 
the characteristics of various advection schemes. The characteristics of the local 
second-moment conserving quasi-lagrangian scheme have been investigated by 
Christensen and Prahm [l] and Pepper and Long [5]. 

II. GENERAL DESCRIPTION OF THE SCHEME 

The numerical scheme utilizes a Eulerian rectangular grid over any domain. Within 
each rectangle, called a macro-cell, one separate, rectangular micro-cell is established 
based upon the constituent distribution within the macro-cell. The macro-cell, with 
an arbitrary constituent distribution c(f, 7) is replaced with a micro-cell of uniform 
rectangular constituent distribution with the same zeroth, first and second central 
moments as the macro-cell. The quantities (f, 7) are non-dimensional coordinates 
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with respect to the center of the macro-cell where -0.5 < 5 < 0.5 and -0.5 < 
q < 0.5. The micro-cell moments are obtained from 

(1) 

(2) 

(3) 

2 12 0.5 
Px _ -7 s 45, rl)(t - wz)” 4 (4) 

-0.5 

2 12 o.5 
PLr _- --- c I -o,5 c(E, TNT - 4” dr (5) 

and establish the micro-cell’s amount of constituent, center of gravity and widths 
within the macro-cell. (See Fig. 1.) 
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FIG. 1. The definition of a micro-cell within a macro-cell. The micro-cell center of gravity (mC , 
my) is measured with respect to the macro-cell center of gravity, and the micro-cell widths are (pz, 
&. Within the macro-cell, the (5, 7) coordinates are used where -0.5 < 5 Q 0.5 and -0.5 Q 7 < 
0.5. 

At each time step the new position of an advected constituent is established by 
linearly translating each micro-cell, according to the prescribed velocity field, to a new 
location within the Eulerian grid. As each micro-cell is translated, information on 
the contribution it will make to the distribution of constituent within each macro-cell 
is recorded. When all micro-cells have been translated, the new constituent distri- 
bution within each macro-cell is used in conjuction with Eqs. (1) through (5) to 
establish new micro-cell details. 

The scheme is quasi-lagrangian as at each time step micro-cells are translated with 
respect to the fixed grid and then immediately decomposed to the Eulerian macro-cell 
grid. At a iocaf macro-cell level, the scheme conserves the individual macro-cell’s 
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constituent distributions zeroth, first and second central moments. However, for 
the global constituent distribution the zeroth moment is conserved while higher 
moments are modified. 

III. ANALYSIS OF THE SCHEME 

The numerical investigation follows the analysis procedure of Mahlman and 
Sinclair [3] to examine the ability of the scheme to solve the one-dimensional linear 
advection equation 

ac c 
at’ -14 z (6) 

where c = c(x, t) is a constituent being advected at a constant velocity u along the 
x axis, The initial conditions imposed upon c are 

I0 for .‘c < 5 or x 3 5 

1-i+ for -5 <x60 cz (7) 

1-T for O<x<5 

Through non-dimensionalizing the terms in Eq. (6) the onIy relevant parameter 
is the CFL criterion, Q, where u = u(dt/dx). Here dx is the grid spacing and dt 
is the time interval. The values of u were chosen to equal 0.3 125 and 0.03 125 and were 
selected as each allows for investigation of advection of an integer number of wedge 
distributions with u = 0.3125 corresponding to a typical choice in studies while 
(T = 0.03125 is sufficiently small to suppress space and time truncation errors. 

An investigation of the behavior of the numerical scheme applied to Eq. (6) with 
the initial constituent distribution described by (7) can be performed by considering 
the following domain integrals: 

s cm d,x N f (c)m m = 1,2,4 
i=l 

(8) 

(10) 

where n corresponds to the number of equally spaced grid points. 
These time invariant integrals describe important characteristics of the constituent 

distribution. The integral (8) with m = 1 expresses conservation of the advected 
constituent. All schemes considered herein conserve this integral and therefore the 
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integral has not been included in further discussions. The integral (8) with m = 2 
is, in many physical applications, proportional to some form of energy, and, hence, 
the integral measures diffusive effects of the numerical scheme. The integral (8) with 
m = 4 is an expression of how the advected constituent distribution is able to maintain 
maximum values. The integral (9) measures the growth or decay of local constituent 
gradients, while (10) measures the growth or decay of local curvature of the 
constituent. 

The constituent distributions obtained from advecting an initial wedge distribution 
fifteen, thirty, forty-five and infinite wedge-widths by the local second moment 
conserving quasi-lagrangian scheme with u = 0.3125 are illustrated in Fig. 2. The 
constituent distributions in Fig. 2 show no presence of any phase difference between 
the numerical and analytic distibutions. Therefore, the computational velocity of the 
scheme equals the true analytic velocity. The numerical distributions also show no 
evidence of either negative values or non-physical disturbances leading or trailing 
the distribution. 

All the integrals, (8) through (10) of the numerically advected distribution show low 
correlation with respect to their initial values of a wedge distribution. These changes 
in the numerically advected distribution integrals are associated with the decompo- 
sition of the original wedge distribution into a rectangular one, which is illustrated 
at infinity wedge-widths in Fig. 2. The integrals of the numerically advected distri- 
bution are, therefore, all bounded as, at infinity wedge-widths; they all reach steady 
state values. 

The auto-spectra of c2 obtained from the cases described in Fig. 2 are shown in 
Fig. 3a. The figure illustrates that the scheme preserves low wave numbers while 
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FIG. 2. A comparison between the analytical and numerical distributions for advection intervals 
of 15,30,45 and a, wedge-widths with (I = 0.3125. 
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FIG. 4. A comparison between the analytical distribution and several numerically obtained 
distributions after an advection interval of 15 wedge-widths with D = 0.3125. 
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amplifying certain high wave numbers. The amplification of wave numbers is asso- 
ciated with the decomposition of the initial wedge into a rectangular distribution as 
illustrated in Fig. 3b. This amplification of certain high wave numbers may lead to 
instability in non-linear self advection (u(&/&)) problems. 

The time truncation error of the local second-moment conserving quasi-lagrangian 
scheme is studied by propagating the initial wedge distribution fifteen wedge-widths 
for u equal to 0.3125 and 0.03125. With u = 0.03125 all the features exhibited by the 
constituent distributions with u -= 0.3125 were evident. At the reduced value of u, 
however, the wedge decomposition to a rectangular distribution was more evident. 

To evaluate the local second-moment conserving quasi-lagrangian scheme in con- 
text with other schemes, equivalent numerical studies with an initial wedge distri- 
bution advected fifteen wedge-widths with G = 0.3125 are made with several com- 
monly implemented finite difference approximations of the advection equation, (see 
Mahlman and Sinclair [3]). The finite difference schemes investigated include the leap 
frog in time, with second and fourth order accuracy in space schemes, and a quasi- 
lagrangian, Euler in time and fourth order accurate in space scheme. 

An illustration of the characteristics of each scheme in advecting the initial wedge 
distribution is shown in Fig. 4. The leap frog, fourth order accurate in space scheme 
shows a small phase lag with the peak value suppressed. Non-physical disturbances 
are evident in the distribution and all integrals with the exception of se4 dx are 
conserved. The scheme demonstrates significant improvement over the leap frog 
second order accurate in space scheme which produces significant phase lag and 
appreciable decrease in peak value. Prominent, non-physical disturbances are also 
evident behind the distribution with all integrals except j c4 dx being conserved. The 
quasi-lagrangian scheme demonstrates no evidence of phase lag, some presence of 
non-physical disturbances, a decrease in peak values, and a supression of all 
integrals. 

IV. CONCLUSIONS 

An investigation of a second-moment conserving quasi-lagrangian scheme 
demonstrated several unique features. The obvious advantages exhibited by the scheme 
which appeared in the constituent distribution include no possibility of negative 
distribution values appearing, no evidence of phase lag between the numerical and 
analytic distribution, no presence of non-physical disturbances either leading or 
trailing the distribution and that the higher the CFL criterion the more accurate 
the shape of the constituent distribution compared to the initial one. The scheme 
can also be implemented in regions containing irregular closed boundaries without 
any complications. 

The disadvantages of the scheme are associated with the decomposing of the initial 
wedge constituent distribution into a rectangular one through advection. This intro- 
duced the effect of non-conserving the global integrals and amplifying certain high 
wave numbers in the autospectra of c2 which may lead to instability in non-linear 
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self advection problems. The advantage of a more accurate, constituent distribution 
being obtained with a higher CFL criterion can also be a disadvantage as a low 
CFL criterion may be required to accurately describe the prescribed velocity field. 

The investigation of several commonly implemented finite difference advection 
schemes demonstrates the characteristics of these schemes within the study. A com- 
parison of the schemes suggests that the local second-moment quasi-lagrangian 
scheme is competitive with these other schemes. 
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